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A well-known class of biophysical models, first introduced by Kerner, is 
shown to admit a convenient Hamiltonian formulation in which motion 
through the phase space of system variables involves explicit constraints. 
To treat the macroscopic properties of such models, we develop an ensemble 
theory of systems subjected to phase space constraints. For such systems 
we obtain a generalized Hamiltonian statistical mechanics which preserves 
much of the structure and efficacy of the corresponding physical theory. 
In a first application of the method, we recover Kerner's original "biological 
ensemble" as a special case involving information optimality and con- 
servative biosystems. 

KEY WORDS: Ensemble theory; Hamiltonian dynamics; constraints; 
macrovariables; generalized Poisson brackets; Liouville equation; bio- 
logical modeling; dynamical systems; Dirac-Hamilton theory. 

1, I N T R O D U C T I O N  

In physical theory, the Hami l ton ian  formal ism provides a unified description 

o f  particle and field dynamics.  Its impact  on statistical mechanics  is well 

known and has influenced the t rea tment  o f  both  equi l ibr ium 3 and non-  

equi l ibr ium 4 phenomena .  In biology, on the other  hand, the significance, or 
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Cambridge, Massachusetts. 
8 For example, the axiom of equal a priori probabilities in phase space and the axiom 

that the energy is the only relevant additive constant of the motion. ~1-3~ 
4 For example, the geometric properties of ensemble motion, the approach to equilib- 

rium, and the existence of macroscopic properties. ~1'3-s~ 
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even the existence, of unified descriptions is much less clear; in particular, a 
formalism resembling that achieved in the Hamil toniantheory  of physical 
systems has not been available for analyzing models used in biological 
explanation at either the dynamical or statistical levels. 

In this communication we establish such a generalized Hamiltonian 
theory for the set of classical biophysical models introduced by Kerner. (9'1~ 
The crux of our development is a demonstration that the standard theory of 
biological ensembles (9'1~ can be structured into a statistical mechanics of 
appropriately constrained Hamiltonian systems. We then show that powerful 
tools from both the dynamical and statistical theories of physical systems can 
be adapted to the biological context, where prediction of variational prin- 
ciples, collective behavior, and macroscopic properties 5 is a central 
problem.(~l-14,~7,2~,22,a6) 

The difficulty involved in formulating a satisfactory approach to such 
calculations arises partly from the diversity of organic phenomena which one 
is trying to encompass and partly from the highly nonlinear, often dissipative, 
properties of the underlying dynamics. In many organic processes ~1s-~7) the 
time development takes the form of a system of  first-order differential 
equations 6 

dcj = Xj (x l ,  x2,..., XN, t), j = 1,..., N (1) 

where the functions X s vary from model to model but are usually nonlinear. 
For  complex systems like a metabolic network, N is very large. While it is 
unrealistic to expect that all models of the type (1) have a simple canonical 
transcription, we are able to show that such models can be expressed in terms 
of an exact, constrained, Hamiltonian dynamics. A step of this sort seems 
crucial in the establishment of a biological statistical mechanics which can 
build on the concepts and methods so successful in physical theory. 

It is well known from the work of Pfaff, Lie, and K6nig, as pointed out 
by Whittaker (18~ and by Kerner, (9'1~ that a Hamiltonian structure can be 
formally achieved for systems of equations of the type (1) by dividing the N 
variables xj, suitably transformed, into a set of N/2 "space"  variables, and 
a conjugate set of N/2 " m o m e n t u m "  variables. 7 For  systems with any 
significant degree of complexity, this construction is usually intractable and 
algorithms for achieving it have been worked out only in simple cases. It 

6 I.e., properties emerging (observable) at a more macroscopic level of description; 
e.g., biochemical, cellular, ecologic. 

6 The choice of properties depends on the biological context; e.g., the xj might be 
chemical concentrations or animal population densities. 

7 We deal with the standard case of N = even in this paper; the case of N = odd 
involves additional constraints which can be handled by methods related to those 
developed here. 
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has yet to be widely applied to biological modeling. Moreover, this type of 
construction obscures the fundamental similarity of the xj variables in their 
original biophysical or biochemical context. 

An alternative possibility is to work with the statistical mechanics in an 
enlarged phase space of dimension 2N where all of the xj retain their original 
meanings, In this paper we wish to show that one can adapt to the purpose 
a new theory of Hamiltonians due to Dirac. ~1~,2~ In this approach one 
introduces a set of N momentum variables conjugate to the xj through the 
device of a Dirac " to t a l "  Hamiltonian, along with exactly N constraint 
equations which ultimately reduce the degrees of freedom in the phase space 
from 2N to N. The time development of the biological ensemble in both 
conservative and dissipative biosystems is then governed by a familiar Liou- 
ville equation, so the formalism provides a means for formal interpretation 
as well as practical calculation. 

This accomplishes for the first time a general Hamiltonian stag e for the 
program of mapping a biodynamics (1) and its statistical mechanics first to 
variational and then to Hamiltonian form. This program has been widely 
discussed (9,10,17.22-25~ in recent years, but little progress with the Hamiltonian 
aspects has previously been documented. For the system of equations (1), a 
Lagrangian generally exists, at least locally, (1~ and the associated variational 
principle gives an important optimality rule ~ for the biosystem's design. The 
problem of constructing a Lagrangian given the system of equations (1) has 
been solved in several specific models, (~'1~ and one anticipates that as 
insight into biological system design sharpens, insight into the construction 
of Lagrangians will also develop. We recall that even in physical theory no 
general algorithms exist other than specific ones for specific systems, based on 
experience. 

In Section 2, we carry out the transformation of the bioensemble theory 
to constrained Hamiltonian form and investigate the consequences for the 
canonical properties of the system of equations (1). In Section 3 we use the 
theory of generalized Poisson brackets to relate our work to the point of view 
of Pfaff, Lie, and Ktinig. Although we carry out these developments for 
Lagrangians which are explicitly independent of time, the theory is readily 
generalized to cover explicit time dependence. This is briefly discussed in 
Section 4. As a first application of the formalism, we develop in Section 5 
Kerner's biological ensemble theory as a special case involving stationary 
ensembles in conservative biosystems. The paper concludes with a short 
discussion of results in Section 6. 

8 It is useful to recall that optimality arguments ~1v'~1'22'36~ motivate variational prin- 
ciples, Lagrangians, and Hamiltonians in this subject from the biological side. This 
adds significantly to the utility of canonical forms for treating the dynamics and 
statistical mechanics of (1). 
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2. G E N E R A L  T H E O R Y  

In our work, biological ensemble theory emerges from a consideration 
of reduced descriptions for the dynamics (1) in which the relevant variables 
are macrovariables (emergent properties) Ak(x), k = 1,..., M << N. System 
description at the coarse-grained A-level is accompanied by statistical un- 
certainties in the corresponding description at the "microscopic" x-level. If 
A(x) is one such macrovariable, then its average temporal behavior is given 
by 

(A)(t) = f dx A(x)p(x, t) (2) 

where p(x, t) is the x-space ensemble density representing the distribution of 
x-level uncertainties. As in physical theory, in the dynamics of the "bio- 
logical ensemble" the density p(x, t) follows the conservation law 

8tp = -div(pX) (3) 

and the evolution of the ensemble is determined by the properties of the 
velocity field X [see the system of equations (1)]. The variational properties 
of such fields have been investigated by Kerner and others, (17'22-2~) who con- 
sidered the possibility that Lagrangians L(x, R, t) exist such that the Euler- 
Lagrange equations of the variational (optimality) principle 

L dt  = 0 (4) 
tz 

give the biodynamics (1). The first-order rate structure of (1) suggests <9,1~ 
that model Lagrangians can generally be written and are first order in the s 
(summation convention): 

L = Uj(x, t)gj -- bo(X, t) (5) 

The Euler-Lagrange equations can then be expressed in the form 

F~ms = Am (6a) 

where the quantifies Fkm are given by 

Fk m = 0 U~ 0 Urn = - Fm ~ (6b) 
OXm Ox~ 

and the quantity 

A~= ~u~ ~Vo (6c) 
~t c3xt~ 
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can be regarded as a "generalized force." The /~/cm satisfy 

a (7) e,I'km = 

Equations (5)-(7) have been solved in applications of biological ensemble 
theory to chemical kinetics, biochemical networks, neurobiology, and 
ecology/~,lo,2z-zs), 9 

If  one follows the usual procedure for constructing a Hamiltonian from 
the Lagrangian (5), ~~ 

Ho = pk2k -- L (8) 

Pk --- ~LI~2~ (9) 

which leads to the identification Ho = Uo(x), it becomes apparent that the 
corresponding canonical equations do not return the appropriate dynamical 
equations (1). This difficulty is easily traced to the global singularity of the 
map (9) from the velocities 2k to the momenta Pk; the Jacobian of this 
transformation vanishes everywhere: 

detIIO2L/O2j 02k~ = 0 (10) 

Regular Hamiltonian theory assumes, on the contrary, that this Jacobian is 
everywhere nonvanishing. The question therefore arises as to whether a 
Hamiltonian formulation for the ensemble can be constructed at all. 

Dirac(2~ has succeeded in generalizing Hamiltonian mechanics to include 
singular Lagrangians of the type (10). We have adapted the Dirac method to 
statistical mechanics. In the following we use this method to develop exact 
Hamiltonian equations for the biological ensemble, referring only to those 
parts of  the Dirac theory essential to our formalism; complete descriptions of 
his work are available elsewhere. (6'10'2~ 

For the linear Lagrangian (5), all momenta are of  the Dirac dependent 
type, ~2~ given by velocity-independent expressions 

Po = Uo(x), p = 1 ..... N (11) 

The system dynamics can then be regarded as the motion of a point in 2N- 
dimensional phase space, constrained by the N equations 

~o = P.  - V.(x) = 0 02)  

9 Since Eqs. (6) are N equations in N + 1 unknown functions, and since both (6) and 
(7) admit gauge-invariant transformations, neither set alone gives unique solutions for 
Uz ..... UN, Uo. Auxiliary conditions such as r176 Uo = XkU~ are usually specified to 
complete the system. 

lo Until Section 4 we consider L(x, it, t) = L(x, 5). 
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The system is thus restricted to an N-dimensional constraint hypersurface ~t'. 
By incorporating the constraints into the canonical formalism we obtain, 
following Dirac, the generalized canonical dynamics (GCD) 

~Uo . OUo (13a) 2j= epj x~ opj 

OUo ouo 
P~ -- -Ox--~ + 2o Ox~ (13b) 

where k and p both run over 1,..., N and j takes all values on 1 ..... N not 
already covered by 0. Since p covers 1,..., N, there are no applicable values of 
j ;  the GCD provides no information on the 2o directly from (13a). This lack 
of  explicit GCD expressions for the x D is typical of singular Lagrangians and 
is due to the constraints. In practice, equations for 2p are constructed from 
(13b) and the constraint equations. We exemplify this process in the Appendix 
for the linear Lagrangian model, establishing that for the allowed motion on 
~' ,  Eqs. (13a) and (t3b) return the Euler-Lagrange equations for the bio- 
dynamics in the system of equations (1). Equations (13a) and (13b) can be 
rewritten in algebraic form by using the Dirac " to ta l  Hamiltonian," which 
for the linear Lagrangian (5) turns out to be 

H = No(x) + [p, - Up(x)]2 D (14) 

Using this Hamiltonian, we find that the canonical equations (13a) and (13b) 
are equivalent to 

2~ ~ [x~, H]  (15a) 

Pk ~ [Pk, H]  (15b) 

(k = 1,..., N), where [-, �9 ] are the usual Poisson brackets and ~ are the weak 
equalities of Dfrac, (2~ by which the Poisson brackets are first fully evaluated 
and then the limit Po --~ Uo is taken. When this is done, Eqs. (15b) reduce to 
our previous equations (13b); (15a) give the consistency relations 2e = 2k, 
k = l  ..... N. 

By means of the dynamics (15) we can now relate the time development 
of the biological ensemble to the Hamiltonian (14): 

~tp(x, t) ~ -[x~, H] ~p/~xk + pD(x) (16a) 

where D(x) is the canonical compressibility - a [x~ ,  HI~axe. The term con- 
taining the p gradient contracts to - [p, H],  so that Eq. (16a) assumes the 
form of  a canonical Liouville equation which includes the possibility of  
compressible flow 11 : 

OtP ~ - [P ,  H]  + pD(x) (16b) 

11 Note that the term "incompressible flow" in physical theory refers to the 2N- 
dimensional phase space. Unconstrained flow in the 2N-dimensional phase space 
used here is also incompressible and the compressibility of the allowed motion is 
recovered, when it is nonzero, by applying the constraints. 
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If  the flow in x space is everywhere incompressible, one obtains the Dirac- 
Liouville equation for the ensemble: 

8tO ~ - [P, H] (16c) 

By considering the transformation properties of the Dirac representation one 
can show that, as in physical theory, the time development of the ensemble 
corresponds to a canonical transformation in the embedding space of phase 
coordinates (x, p). 

This canonical form for the ensemble dynamics is a direct consequence 
of the dynamics represented by the system of equations (I) by virtue of the 
constraint hypersurface ~"  embedded in the 2N-dimensional (x, p) phase 
space. In the next section we show that this embedding is not fortuitous; on 
the contrary, it is related to the existence of generalized canonical properties 
in (1) which emerge clearly in the limit Po --~ Up. 

3. GENERALIZED C A N O N I C A L  PROPERTIES 

Putting the constraints CD = 0 on the HamiItonian dynamics (15), we 
obtain the limiting form (Appendix) 

{~ z [x~, H], p~ z [p~, g ] ) . ~  ~ = - r  ~Uo/~X,. (37) 

The RHS of (I 7) is the Euler-Lagrange form (6) for the equations of motion; 
together with the condition Po = Uo it determines the system's path on the 
hypersurface (or equivalently, the path through the x space). Let us write this 
x-dynamics in the form 

2k = 9 ,k~ OUo = 7,~m 8x ~ 8Uo 
8x----m -Ox '~ OXr~ -~ [[Xk, Uo~ (18a) 

II~,~:m[[ = __ llrkmH-1 (18b) 

It is clear that the operator [[-, .~ shares both the skew-symmetry and bi- 
linearity of the ordinary Poisson bracket. By noting that Pkm is the curl of the 
field U, one can show that [., �9 ~ also obeys the Jacobi identity 

~h  [~f, g~, h~ = 0 09) 
c/~c]lc 

and is therefore a Lie bracket. The most familiar Lie bracket in classical 
mechanics is of course the ordinary Poisson bracket (PB), and ~., .~ is a 
generalization of the PB, sharing many of its properties. r It is called a 
generalized Poisson bracket (GPB) and its properties have in recent times 
been studied extensivelyJ 6~ Hence we find ~12~ that the motion (37), (38) is a 
generalized canonical dynamics (6) given by 
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2k = [[x~, Uo?, k = 1 ..... N (20) 

Applied to an ensemble of system points, this dynamics leads to the general- 
ized canonical Liouville equations 

a~f, = -Ep,  u d  

atp = -EP, Uo~ + pD(x) 

where 

and where 

(incompressible flow) (21a) 

(compressible flow) (21b) 

D(x) = - 8[[x~, Uo~/Sx~ (21c) 

Uo acts as the conserved GPB Hamiltonian. As a result, con- 
straining the bioensemble dynamics to the N-dimensional form does not 
destroy its canonical properties, but instead induces a flow which is a general- 
ized canonical map (6) of the x space into itself. Further information on these 
properties is presented elsewhere. (6,12'26) 

It is useful to compare our GPB description of the ensemble with the 
viewpoint of Pfaff, Lie, and Kbnig (PLK). (1~ Although both are constraint- 
free and make use of N-dimensional x space, the goal in PLK is not just a 
GPB description; one seeks instead a regular Hamiltonian description in 
which the Poisson bracket replaces the GPB. The difficulties inherent in the 
PLK program were referred to in Section 1; we note, however, that once a 
GPB is obtained, the PLK problem can be reduced from the usual analytical 
procedure (18) to one in linear algebra, mapping GPB -+ PLK. (26'2v 

4. E X P L I C I T  T I M E  D E P E N D E N C E  

Both the Dirac and the GPB methods can be extended to cover situa- 
tions involving Lagrangians which depend explicitly on time: 

L = Uj(x, t)]q - Uo(x, t) (22) 

In our applications, time-dependent Lagrangians are encountered both in 
models subjected to external driving forces and in models with internal 
dissipation (self-regulation, homeostasis). Here we summarize the essential 
results; Lumsden (12) discusses the details. 

The GPB can be generalized through the time-dependent functions 

au~ aura.. Fkm(x, t) = ~ (t) -- ~ (t) (23) 

leading to an "extended"  bracket 

~f, g~ = ),~m(x, t)  ~ f  8g (24) 
OX~ OX• 

where f and g can have an explicit time dependence and the Jacobi identity 
(19) is satisfied at every instant t. Since the Euler-Lagrange equations (6) 
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now contain terms due to the explicit time dependence, the complexity of the 
2k equations is somewhat increased: 

)?~ = ~x~, go-I] + 7 ~m 8t gm (25) 

and the generalized Liouville equation contains these new terms as well: 

8p 
8tp = -~p, Uo~ + ~,m'-~z O, Um + pD(x, t) (26) 

The Dirac-Poisson bracket is, in contrast, undisturbed by an explicit 
time dependence, and for a time-dependent Dirac total Hamiltonian the 
Liouville equation again has the simple canonical structure 

8,p ~ -[p ,  H(t)] + pD(x, t) (27) 

D(x, t) vanishes for incompressible flow. The constraints 6D(x, p, t) are now 
time dependent, so that as the dynamics unfolds on the constraint hyper- 
surface, the constraint hypersurface is itself unfolding within the (x, p) phase 
space. 

5. S T A T I O N A R Y  E N S E M B L E S  

In a theory of ensemble dynamics, one of the most interesting questions 
concerns the asymptotic properties of the ensembles as t -+  oo. Attention 
generally focuses on the existence of stationary (time-independent) ensembles, 
and to what extent time-dependent ensembles eventually approach these 
stationary limits. (1-8) Provided that questions regarding the structure of 
initial ensembles can be settled, such analyses complement arguments from 
ergodic theory in justifying specific forms for the equilibrium ensembles. As 
a first application" of our formalism, we examine the question of stationary 
biological ensembles. 

In his pioneering papers, Kerner ~9'1~ suggested a viewpoint based on 
Gibbsian ensembles. I f  a biodynamics (1) is conservative and admits an 
isolating first integral, then the corresponding conserved quantity A is a good 
macrovariable for the system. Ensembles on the x space shells corresponding 
to A = constant give rise to statistical predictions about the system's 
behavior. Kerner restricted his investigation to time-independent ensembles 
and thus to stationary expectation values. A Gibbsian p oc e-'A was posited 
as an intuitively attractive form for this ensemble, but little progress toward 
justifying the Gibbsian form has since been documented. It is therefore of 
relevance to consider the possibility that the Gibbsian bioensemble is a 
stationary solution of the appropriate Dirac-Liouville equation. In this 
section we show that Kerner's ensemble is in fact the stationary ensemble of 
maximum information entropy in a conservative system with macrovariable 
A = Uo. 
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From the Liouville equation (17) it is apparent that for a general bio- 
dynamics the stationary ensemble condition is 

[p, H] + pD(x) z 0 (28) 

The compressibility term, when nonzero, can produce a condensation of 
p(x, t) into selected x space regions. Here, it is sufficient to note that the 
Kerner problem corresponds to the case of a conservative, incompressible 
biodynamics. The condition (28) then specializes to 

[p, H] • 0 (29) 

with [H, H] ~ 0. Thus for the Kerner formualtion, the relevant macro- 
variable is H ~ U0. The Uo appears to be isolating in the conservative 
models studied to date39'1~ 

Equal initial a priori probabilities are motivated in the symplectic 
geometries of the Dirac and the GPB dynamics32) The ensemble of optimal 
information entropy (2,=s) is then proportional to e-an, where A is a constant 
analogous to the inverse temperature. From Eq. (29) we see that such an 
ensemble is stationary, and from the properties of the Dirac weak equalities 
that (up to normalization factors) 

p ,.~ e - a n  ~ e-~'tzo (30) 

The RHS of (30) is the Gibbsian bioensemble conjectured by Kerner, con- 
structed here on the basis of a canonical nonequilibrium theory. 

The Gibbsian bioensemble is thus an information-optimal, stationary 
solution of the Dirac-Liouville equation (17) in a one-integral, conservative 
biodynamics. The same conclusion follows from an analysis based on the 
GPB Liouville equation (21), and similar results hold for more complex 
systems with two or more isolating integrals. In future work it will therefore 
be of interest to study the Gibbsian bioensemble as an asymptotic attractor 
of initial ensembles. Some progress in this direction has been achieved, and is 
the topic of a separate report. ~29) 

6. D I S C U S S I O N  

A general Hamiltonian representation has not previously been available 
for the biological ensemble theory; prior work has dealt mainly with hypothe- 
sized Gibbslike ensembles at equilibrium in conservative biodynamics. In 
the present study a complete Hamiltonian representation has been achieved. 
For N large in (1), this gives for any system macrovariables a Liouville 
ensemble statistics which covers not only c o n s e r v a t i v e  but d i s s i p a t i v e  models 
as well. Nonequilibrium is treated together with equilibrium and the pre- 
viously hypothesized ~9,1 o,23-2~ Gibbs bioensembles are recovered as a subcase. 
For nonequilibrium ensembles the Hamiltonian form establishes the trans- 
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formation structure of the ensemble motion through the phase space of 
biological coordinates. Furthermore, by placing the problems in a common 
framework it reveals basic points of comparison between handling complex 
biodynamic and complex physical models via ensemble methods. 

In the case of time-independent Lagrangians, the correspondence with 
physical theory is rather complete, the classical Poisson brackets being 
replaced by the Dirac-Poisson brackets or by the generalized Poisson brackets. 
When the time dependence becomes explicit, the formal structure remains 
unchanged in the Dirac theory, with the ensemble dynamics involving a 
system of time-dependent constraints. For time-dependent Lagrangians in 
the GPB representation, the formal similarity to the classical Liouville 
equations weakens, since the ensemble is then driven by forces dependent 
upon the time rate of change of the generalized momenta Uk(x, t). 

Although the canonical formalism provides considerable insight into 
the structure of stationary ensembles (Section 5), it is naturally suited as well 
to nonequilibrium calculations involving time-dependent ensembles. The 
canonical Liouville equations (16) and (21) form a starting point equivalent to 
that which has led to reduced descriptions in physical theory. (5,3~ In specific 
applications, generalized kinetic equations are recovered. For example, in a 
two-dimensional biodynamics (l), the corresponding GPB equations (Section 
3) immediately yield as a special case the generalized Langevin equations 
constructed by Zwanzig in his recent work on nonlinear Brownian motion. (al) 
Much less specialized results also follow and we anticipate that the approach 
developed here will be of utility in treating nonequilibrium biological 
ensembles. 

The linear Lagrangian which we have studied in detail is perhaps the 
simplest example of the singular Lagrangians which are encountered in a 
wide variety of purely physical problems as well. Singular Lagrangians figure, 
for example, in hydrodynamics, electrodynamics, relativistic statistical 
mechanics, network theory, and geometric mechanics on non-Euclidean 
manifolds. (6'2~ It is encouraging to note that the Dirac theory opens up 
the statistical mechanics of these and other constrained Hamiltonian 
systems for detailed investigation, maintaining a formalism which encom- 
passes as well the whole of physical statistical mechanics concerned with 
regular Hamiltonian systems. 

APPENDIX.  APPLICATION OF THE C A N O N I C A L  D Y N A M I C S  
(13) 

The generalized canonical equation (13b) is 

~go ~u~ k = 1 ..... N ( A D  Pk = -Ox---~ + 2,~ Oxk' 
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F r o m  (11) it is evident that  for the allowed mot ion  on de' 

0U~ . 

which combines with (A1) to give the explicit x-dynamics 

( eu~ ~u.~ .  ~Uo 

(A2) 

.(A3) 

Equations (A3) are exactly the variational dynamics (6) of  the original model;  
hence the full dynamical  content  of  (6) is preserved in the canonical ex- 
pressions (13). 
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